nmmz.net
当前位置:首页 >> 不定积分基本公式 >>

不定积分基本公式

1)∫kdx=kx+c 不定积分的定义 2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4) ∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+

1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+

1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=

不定积分公式:∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分.不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx

不定积分公式为:在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f.不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分.根据牛顿-莱布尼茨公式,许多函数的定积分的计算

常用的积分du公式有 f(x)->∫f(x)dx k->kx x^n->[1/(n+1)]x^(n+1) a^x->a^x/lna sinx->-cosx cosx->sinx tanx->-lncosx cotx->lnsinx 拓展资料 积分公式主要有如下几类:含ax+b的积zhi分、含√dao(a+bx)的积分、含有版x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双权曲函数的积分.

原发布者:xhj1017 常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=

用分部积分法就好了.∫ x/sint dt= ∫ x d(- cotx)= - xcotx + ∫ cotx dx= - xcotx + ∫ 1/sinx d(sinx)= - xcotx + ln| sinx | + C

注:以下的C都是指任意积分常数.1、 ,a是常数2、 ,其中a为常数,且a ≠ -13、4、5、 ,其中a > 0 ,且a ≠ 16、7、8、9、10、11、12、13、14、15、全体原函数之间只差任意常数C证明:如果f(x)在区间I上有原函数,即有一个函数F(x)使对

网站首页 | 网站地图
All rights reserved Powered by www.nmmz.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com